图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)园区一角科研楼(A楼)自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: Path Planning for a Space-Based Manipulator System Based on Quantum Genetic Algorithm
第一作者: Chen ZC(陈正仓)
参与作者:
联系作者:
发表刊物: Journal of Robotics
发表年度: 2017
卷,期,页: 2017,,1-10
论文出处:
第一作者所在部门:
论文编号:
论文摘要: In this study, by considering a space-based, n-joint manipulator system as research object, a kinematic and a dynamic model are constructed and the system's nonholonomic property is discussed. In light of the nonholonomic property unique to space-based systems, a path planning method is introduced to ensure that when an end-effector moves to the desired position, a floating base achieves the expected pose. The trajectories of the joints are first parameterized using sinusoidal polynomial functions, and cost functions are defined by the pose deviation of the base and the positional error of the end-effector. At this stage, the path planning problem is converted into a target optimization problem, where the target is a function of the joints. We then adopt a quantum genetic algorithm (QGA) to solve this objective optimization problem to attain the optimized trajectories of the joints and then execute nonholonomic path planning. To test the proposed method, we carried out a simulation on a six-degree-of-freedom (DOF) space-based manipulator system (SBMS). The results showed that, compared to traditional genetic optimization algorithms, the QGA converges more rapidly and has a more accurate output.
论文全文:  
其他备注:  
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图