图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)科研楼(A楼)园区一角自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: Generalizing cell segmentation and quantification
第一作者: Wang ZZ(王振洲);Li HX(李海星)
参与作者:
联系作者:
发表刊物: BMC BIOINFORMATICS
发表年度: 2017
卷,期,页: 18,,1-16
论文出处:
第一作者所在部门:
论文编号:
论文摘要: Background: In recent years, the microscopy technology for imaging cells has developed greatly and rapidly. The accompanying requirements for automatic segmentation and quantification of the imaged cells are becoming more and more. After studied widely in both scientific research and industrial applications for many decades, cell segmentation has achieved great progress, especially in segmenting some specific types of cells, e.g. muscle cells. However, it lacks a framework to address the cell segmentation problems generally. On the contrary, different segmentation methods were proposed to address the different types of cells, which makes the research work divergent. In addition, most of the popular segmentation and quantification tools usually require a great part of manual work. Results: To make the cell segmentation work more convergent, we propose a framework that is able to segment different kinds of cells automatically and robustly in this paper. This framework evolves the previously proposed method in segmenting the muscle cells and generalizes it to be suitable for segmenting and quantifying a variety of cell images by adding more union cases. Compared to the previous methods, the segmentation and quantification accuracy of the proposed framework is also improved by three novel procedures: (1) a simplified calibration method is proposed and added for the threshold selection process; (2) a noise blob filter is proposed to get rid of the noise blobs. (3) a boundary smoothing filter is proposed to reduce the false seeds produced by the iterative erosion. As it turned out, the quantification accuracy of the proposed framework increases from 93.4 to 96.8% compared to the previous method. In addition, the accuracy of the proposed framework is also better in quantifying the muscle cells than two available state-of-the-art methods. Conclusions: The proposed framework is able to automatically segment and quantify more types of cells than state-of-the-art methods.
论文全文:
其他备注:
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图