图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)科研楼(A楼)园区一角自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: A survey for the applications of content-based microscopic image analysis in microorganism classification domains
第一作者: Li C(李晨);Wang K(王锴);Xu, Ning
参与作者:
联系作者:
发表刊物: Artificial Intelligence Review
发表年度: 2017
卷,期,页: ,,1-70
论文出处:
第一作者所在部门:
论文编号:
论文摘要: Microorganisms such as protozoa and bacteria play very important roles in many practical domains, like agriculture, industry and medicine. To explore functions of different categories of microorganisms is a fundamental work in biological studies, which can assist biologists and related scientists to get to know more properties, habits and characteristics of these tiny but obbligato living beings. However, taxonomy of microorganisms (microorganism classification) is traditionally investigated through morphological, chemical or physical analysis, which is time and money consuming. In order to overcome this, since the 1970s innovative content-based microscopic image analysis (CBMIA) approaches are introduced to microbiological fields. CBMIA methods classify microorganisms into different categories using multiple artificial intelligence approaches, such as machine vision, pattern recognition and machine learning algorithms. Furthermore, because CBMIA approaches are semi- or full-automatic computer-based methods, they are very efficient and labour cost saving, supporting a technical feasibility for microorganism classification in our current big data age. In this article, we review the development history of microorganism classification using CBMIA approaches with two crossed pipelines. In the first pipeline, all related works are grouped by their corresponding microorganism application domains. By this pipeline, it is easy for microbiologists to have an insight into each special application domain and find their interested applied CBMIA techniques. In the second pipeline, the related works in each application domain are reviewed by time periods. Using this pipeline, computer scientists can see the dynamic of technological development clearly and keep up with the future development trend in this interdisciplinary field. In addition, the frequently-used CBMIA methods are further analysed to find technological common points and potential reasons.
论文全文:
其他备注:
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图