图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)科研楼(A楼)园区一角自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: 2D normalized iterative hard thresholding algorithm for fast compressive radar imaging
第一作者: Li GX(李恭新);Yang J(杨佳);Yang WG(杨文广);Wang YC(王越超);Wang WX(王文学);Liu LQ(刘连庆)
参与作者:
联系作者:
发表刊物: Remote Sensing
发表年度: 2017
卷,期,页: 9,6,1-16
论文出处:
第一作者所在部门:
论文编号:
论文摘要: Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D) normalized iterative hard thresholding (NIHT) or 2D-NIHT algorithm, is proposed to directly reconstruct radar images in the matrix domain. The reconstruction performance of 2D-NIHT algorithm was validated by an experiment on recovering a synthetic 2D sparse signal, and the superiority of the 2D-NIHT algorithm to the NIHT algorithm was demonstrated by a comprehensive comparison of its reconstruction performance. Moreover, to be used in compressive radar imaging systems, a 2D sampling model was also proposed to compress the range and azimuth data simultaneously. The practical application of the 2D-NIHT algorithm in radar systems was validated by recovering two radar scenes with noise at different signal-to-noise ratios, and the results showed that the 2D-NIHT algorithm could reconstruct radar scenes with a high probability of exact recovery in the matrix domain. In addition, the reconstruction performance of the 2D-NIHT algorithm was compared with four existing efficient reconstruction algorithms using the two radar scenes, and the results illustrated that, compared to the other algorithms, the 2D-NIHT algorithm could dramatically reduce the computational complexity in signal reconstruction and successfully reconstruct 2D sparse images with a high probability of exact recovery.
论文全文:
其他备注:
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图