图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)科研楼(A楼)园区一角自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: Laser-nanomachining by microsphere induced photonic nanojet
第一作者: Wen YD(文扬东);Wang FF(王飞飞);Yu HB(于海波);Li P(李盼);Liu LQ(刘连庆);Li WR(李文荣)
参与作者:
联系作者:
发表刊物: Sensors and Actuators, A: Physical
发表年度: 2017
卷,期,页: 258,,115-122
论文出处:
第一作者所在部门:
论文编号:
论文摘要: The photonic nanojet generated by microsphere-based modulation of incident light has attracted much research attention in recent years because its full width at half maximum (FWHM) is less than the optical diffraction limit, which enables the microsphere to serve as a superlens to achieve super-resolution imaging. In addition to its sub-diffraction limited FWHM, the intensity of the photonic nanojet is also enhanced by several times that of the incident light. Here, we report sub-micrometer features that can be fabricated on MEMS-related materials by simply using a laser-induced photonic nanojet through microspheres. The influences of the diameter of silica microspheres and the initial power of laser beams on “nano-drilling” cavities on substrates were experimentally studied. Compared to the experiments without the microspheres, the resolution of the laser-micromachined structures was markedly improved using our approach. We have shown that it is possible to use a laser beam with initial beam width of 5 μm to fabricate 250 nm diameter cavities on silica substrates. We further simulated the photonic nanojet created by silica microspheres using the finite-difference time-domain (FDTD) computational technique to gain insights into the physical mechanisms of the photonic nanojet and its influence on the final nano-drilling results. This photonic nanojet-based nano-drilling method presents new opportunities for low-cost, high-throughput fabrication of nanoscale devices in the future.
论文全文:
其他备注:
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图