图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)科研楼(A楼)园区一角自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: Optimal layout and deployment for RFID system using a novel hybrid artificial bee colony optimizer based on bee life-cycle model
第一作者: Jing, Shikai;Lian, Xiaodan;Chen HN(陈瀚宁);Zou T(邹涛);Ma LB(马连博)
参与作者:
联系作者:
发表刊物: Soft Computing
发表年度: 2017
卷,期,页: 21,14,4055-4083
论文出处:
第一作者所在部门:
论文编号:
论文摘要: Large-scale radio frequency identification (RFID) network planning (RNP) problem has been proven to be a NP-hard issue, which can be formulated as a high-dimensional nonlinear optimization problem with a mixture of discrete and continuous variables and uncertain parameters. First, a two-level optimization model for RFID network planning based on distributed decision making (DDM) is presented in this paper. In this model, the mixed discrete and continuous planning variables, namely the number, location, and radiate power of RFID readers are optimized. In each level of the optimization model, the different objectives to determine optimal values for these planning variables are as follows: (i) minimization of total installation cost of RFID network in the top-level; (ii) maximization of tag coverage and network reliability, and minimization of reader interference in the lower-level. In order to solve the proposed model effectively, this work proposes an efficient approach for RNP problem, namely the hybrid artificial bee colony optimizer (HABC), which employs the natural life-cycle mechanism to cast the original ABC framework to a cooperative and population varying fashion. In the proposed HABC, individuals can dynamically shift their survival states and population size varies dynamically according to the local fitness landscape during the executions of algorithm. These new characteristics of HABC help to avoid redundant search and maintain diversity of population in complex environments. Experiments are conducted on a set of CEC2005 and discrete benchmarks for evaluating the proposed algorithm. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.
论文全文:
其他备注:
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图