图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
首 页 新闻 机构概况 机构设置 科研成果 研究队伍 研究生教育 国际交流 院地合作 学术期刊 创新文化 党群园地 科学传播
 
科研成果
概况介绍
论文
专著
专利
成果转化
研究所图库
园区一角南区办公楼实验楼(R楼)园区一角科研楼(A楼)自动化所鸟瞰自动化所正门
相关链接
ARP Email 所报
 您现在的位置:首页 > 科研成果 >论文
论文题目: Transmission scheduling for mixed-critical multi-user multiple-input and multiple-output industrial cyber-physical systems
第一作者: Xia ZQ(夏长清);Jin X(金曦);Kong LH(孔令和);Wang JT(王金涛);Zeng P(曾鹏)
参与作者:
联系作者:
发表刊物: INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS
发表年度: 2017
卷,期,页: 13,12,1-13
论文出处:
第一作者所在部门:
论文编号:
论文摘要: Wireless sensor networks are widely used in industrial cyber-physical system installations, where high reliability and the need for real-time data are the two main characteristics. A large amount of real-time data can be transmitted to its destination on time using a reasonable periodic allocation of a node's transmission slots. However, a flow may miss its deadline when flow conflicts occur. When such missed deadlines occur regularly, system performance may degrade, and when the flow is critical, such data losses can result in errors or cause disasters. To address this issue, we introduce multi-user multiple-input and multiple-output technology and a mixed-critical system into an industrial cyber-physical system. When an error occurs or when demand changes, the multi-user multiple-input and multiple-output nodes can switch their transmission mode, changing to a high-criticality configuration to meet the system's new needs. Hence, we first propose a heterogeneous multi-user multiple-input and multiple-output system model. Based on this model, we propose a slot analyzing algorithm that guarantees system schedulability by reallocating slots for each node after replacing conflict nodes with multi-user multiple-input and multiple-output nodes. By considering both system schedulability and cost, the slot analyzing algorithm also reduces the number of multi-user multiple-input and multiple-output nodes required. Then, to further reduce the number of multi-user multiple-input and multiple-output nodes in an industrial cyber-physical system, we propose a priority inversion algorithm that improves schedulability by adjusting slot allocations before replacing conflict nodes with multi-user multiple-input and multiple-output nodes. By reducing the use of multi-user multiple-input and multiple-output nodes, the priority inversion algorithm achieves better performance than the slot analyzing algorithm when the system is in a high-criticality mode. Evaluation results show the effectiveness and efficacy of our approaches.
论文全文:
其他备注:
附件下载:
 
中国科学院沈阳自动化研究所 版权所有 1996-2009 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市东陵区南塔街114号 邮编:110016 留言反馈 网站地图