Title:
First author: Dai LG(代利国);Jiao ND(焦念东);Wang XD(王晓东);Liu LQ(刘连庆)
Abstract: A novel micromanipulation technique of multi-objectives based on vibrating bubbles in an open chip environment is described in this paper. Bubbles were created in an aqueous medium by the thermal energy converted from a laser. When the piezoelectric stack fixed under the chip vibrated the bubbles, micro-objects (microparticles, cells, etc.) rapidly moved towards the bubbles. Results from numerical simulation demonstrate that convective flow around the bubbles can provide forces to capture objects. Since bubbles can be generated at arbitrary destinations in the open chip environment, they can act as both micromanipulators and transporters. As a result, micro- and bio-objects could be collected and transported effectively as masses in the open chip environment. This makes it possible for scientific instruments, such as atomic force microscopy (AFM) and scanning ion conductive microscopy (SICM), to operate the micro-objects directly in an open chip environment.
Contact the author:
Page number: 1-13
Issue: 4
Subject:
Authors units:
PubYear: 2017
Volume: 8
Unit code: 173321
Publication name: Micromachines
The full text link:
Full papers:
Departmens of first author:
Paper source:
Paper type:
Participation of the author:
ISSN: